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ASSTRACT* 

1 9 0 5 ~  
The vortex flow of  an incompressible f lu id  between two 

f i n i t e  f l a t  p l a t e s  i s  considered. Special  a t t en t ion  i s  given t o  

t h e  case for which the rad ius  of t he  p l a t e s  is  l a rge r  than t h e i r  

separation dis tance,  A momentum i n t e g r a l  solut ion gives the  

va r i a t ion  of t he  important parameters R , the  modified boundary 

layer thickness, and gl 

fo r  various values of A 

, t h e  r a d i a l  velocity,  with the  rad ius  

, a measure of t he  imposed r a d i a l  mass 

flow * 
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I o  

INTRODUCTION 

Recent a t tent ion has been focused upon ro t a t ing  flows 

within confined regions,  

confined by s ta t ionary  boundaries has received considerable study. 

The swirling flow of an electrically-conducting f l u i d  

I n  par t icular ,  vortex motion of  q f l u i d  

between two coaxial  cylinders i n  the presence of a magnetic 

f i e l d  has been extensively studied i n  an attempt t o  predict  the  

performance of a magnetohydrodynamic vortex power generator 

(1, 2) .  

confining end w a l l s  on the  flow, 

Such analyses, however, neglected the e f f e c t  of any 

I n  an attempt t o  calculate  t he  e f f e c t  of the  end wal ls  

upon the  vortex motion, several  invest igators  have s tudied the 

swir l ing motion of a f l u i d  over a s ingle  f i n i t e  f l a t  p l a t e  i n  the  

absence of magnetic f i e l d s ,  

by Mack (3) and King (4) , More recent ly  Lewellen and King ( 5 )  
investigated the  flow over a s ingle  f l a t  p l a t e  i n  the  presence 

of an applied axial magnetic f i e l d .  

This work has been w e l l  summarized 

I n  a t yp ica l  analysis  (3)  of t he  non magnetic f l o w  over a 

f i n i t e  s ta t ionary  p l a t e  it i s  assumed t h a t  the flow outside the  

boundary layer  i s  a vortex ( tangent ia l  ve loc i ty  P rn )  with 

negl igible  r a d i a l  veloci ty .  

is solved by a conventional momentum-integral technique. 

The flow within the  boundary layer  
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The growth of a boundary layer  on a f i n i t e  f l a t  p la te  i n  a 

vortex flow has two effects on t h e  flow. The first i s  a 

re ta rda t ion  of t he  tangent ia l  ve loc i ty  due t o  the  act ion of 

v i scos i ty ,  

g rea t  as  t o  cause t h e  boundary layers on the  two end p l a t e s  t o  

occupy an appreciable f rac t ion  of t he  volume of t h e  confined 

region, t he  vortex motion may be greatly affectedo This effect 

i s  r e fe r r ed  t o  as boundary-layer blockage, 

If, i n  a confined flow, the  ac t ion  of v i scos i ty  i s  so 

The second e f f ec t  concerns t h e  r a d i a l  mass flow. The 

r a d i a l  pressure gradient caused by the  vortex motion outside t h e  

boundary layer  cannot be balanced by such a motion within t h e  

boundary layer  becau& of the  slowing ac t ion  of v i scos i ty ,  

imbalance results i n  a net  force t h a t  d r ives  the  f l u i d  near t h e  

wal l  r a d i a l l y  inward, 

mass flow i n t o  the  boundary layer from t h e  outer f lowo 

s ingle  p l a t e  problem such a s  t h a t  analyzed by Mack, t he  r a d i a l  

mass flow within t h e  boundary layer  i s  compensated by an a x i a l  

flow toward the  plate;  it i s  assumed t h a t  t he  r a d i a l  ve loc i ty  i s  

zero outside the  boundary layer ,  

This 

This r ad ia l  flow must be compensated by a 

I n  a 

I n  a problem with the  vortex motion occurring i n  a 

confined region, the  f l o w  picture i s  d i f f e ren t ,  

t angent ia l  veloci ty ,  causing t h e  boundary layer  blockage occurs 

a s  described above, 

upon the  flow; the  r a d i a l  mass flow must be conservedo For motion 

occurring between two impermeable p l a t e s ,  the  net  mass flow a t  any 

r a d i a l  s t a t i o n  i s  a constant independent of the  rad ius  s ince mass 

is  ne i ther  added nor removed, 

The slowing of t h e  

However, there  i s  a new condition imposed 

c 

In  a vortex f low,  the r a d i a l  mass 
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flow within the  boundary layer  induced by the pressure imbalance 

i s  not a constant; it increases as the  radius  decreases,  Therefore, 

t he  r a d i a l  mass f l o w  outside the  boundary layers cannot, i n  general, 

be a constant. 

ve loc i ty  outside the  boundary layer  cannot, i n  general, be a 

constant independent of t h e  radius ( i n  par t icu lar ,  it cannot be 

zero) ,, 

veloc i ty  m u s t  be directed toward the  axis of ro t a t ion .  

above mentioned analysis  o f  the s ing le  p la te  problem i s  not va l id  

i n  general f o r  the two p l a t e  problem since t h a t  analysis  does not 

This i s  equivalent t o  s t a t ing  t h a t  the  r a d i a l  

I n  order t o  physically maintain the  vortex flow t h i s  r a d i a l  

Thus t h e  

s a t i s f y  the  condition t h a t  the r a d i a l  mass flow be conservedo 

If the f r ac t ion  of t he  r a d i a l  mass flow diverted i n t o  t h e  

boundary layer  is  greater than unity, the  r a d i a l  ve loc i ty  outside 

the  boundary layer  must change d i rec t ion  from toward the  vortex 

axis t o  away from t h e  axis. 

down and the flow picture  becomes more complicated, 

In  t h i s  case the  vortex motion breaks 

The two p la t e  configuration was i n i t i a l l y  t r ea t ed  by 

Vogelpohl (6) i n  1944. 

assumed t o  be iden t i ca l ly  zeroa 

be discussed subsequently, 

I n  t h i s  analysis  the axial ve loc i ty  w a s  

The relevance of t h i s  work w i l l  

Recently, Rosenzweig, Lewellen and Ross (7)  analyzed a 

two p l a t e  configuration but the analysis  was l imited t o  t h e  case 

f o r  which the  separation distance between the two p la t e s  was 

greater  than the  rad ius  o f  t h e  p l a t e s ,  

I n  the  present analysis,  the  Navier-Stokes equations w i l l  

be carefu l ly  ordered t o  determine the  proper governing e q a t i o n s  

f o r  flow i n  a confined region fo r  various values of the Reynolds 
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number and the  shape parameter, b/ro where r is  the  rad ius  

of the  p l a t e s  and b 

Par t icu lar  a t ten t ion  w i l l  be focused on the  case 

than one, i.e., f o r  which the  spacing between the  p l a t e s  is  smaller 

than the  radius  of t he  p la tes .  

0 

is the  separation distance between them. 

b/ro i s  smaller 

One of t h e  most powerful t o o l s  used t o  solve the  non-linear 

p a r t i a l  d i f f e r e n t i a l  equations of fluid mechanics i s  a s i m i l a r i t y  

transformation which reduces the p a r t i a l  d i f f e r e n t i a l  equations t o  

ordinary d i f f e r e n t i a l  equations. 

gators dealing with the problem of one i n f i n i t e  f l a t  p l a t e  i n  a 

ro t a t ing  flaw, 

This device i s  used by inves t i -  

It w i l l  be shown why t h i s  method of a t tack  i s  successful 

f o r  the  case of one p l a t e  but cannot be applied t o  t he  two p l a t e  

problem. 

Since a t r u e  s imi la r i ty  does not exist f o r  the two p l a t e  

problem, an approximate solution t o  the problem i s  car r ied  out, 

I n  par t icu lar ,  a momentum in t eg ra l  method i s  used t o  ca lcu la te  the  

varzation of t he  boundary layer thickness with the  radius ,  

t h e  var ia t ion  of t he  outer r a d i a l  ve loc i ty  and the shear stress 

a t  the  p l a t e s  with the  radius are calculated,  

r e l a t i n g  the  net r a d i a l  mass flow t o  the pressure gradient is  

given 

Also 

An equation 
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STATEMENT OF THE PROBLEM 

The problem is  t o  describe accurately the  behavior of a 

ro t a t ing  viscous incompressible f l u i d  between two f i n i t e  f l a t  

plates. The analysis  w i l l  consist  of three par ts :  I) Derivation 

of the  equations governing th i s  flow; 11) 

similarity transformation exists; 111) 

i n t e g r a l  equations f o r  the  boundary layer  thickness,  the  r a d i a l  

velocity,  and shear stress a t  the  wal l  as functions of t he  rad iusa  

Demonstration t h a t  n o  

Solution of t he  momentum 

The p l a t e s  a r e  si tuated p a r a l l e l  t o  each other and t h e i r  

common axis is coincident w i t h  t he  vortex axis of t he  ro t a t ing  

f l u i d  as s h m  i n  f igure  1, With the  p l a t e s  separated by a dis tance 

b 

conditions are, i n  part:  

and with the coordinates shown i n  the  f igure,  t he  boundary 

Let t he  region of i n t e re s t  be bounded r a d i a l l y  by two 

cylinders a t  r a d i a l  s t a t ions  r = er0 and r = r where e 

is  a pos i t ive  number less than oneo 

a ne t  r a d i a l  mass flow inward (toward the  vortex axis) between t h e  

two p la tes .  

su f f i c i en t ly  strong such t h a t  the  r a d i a l  ve loc i ty  i s  everywhere 

toward t h e  axis i n  the  region of i n t e re s t ;  t h a t  i s ,  such t h a t  t he  

0 

It i s  assumed t h a t  there  i s  

It i s  fu r the r  assumed t h a t  t h i s  r a d i a l  mass flow is 
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f rac t ion  of r a d i a l  mass f l o w  i n  t h e  boundary layer  is  less than 

unity. 

down due t o  a reversa l  of t he  d i rec t ion  of t h e  r a d i a l  ve loc i ty  

outside the  boundary layer ,  

This assumption does not allow the  vortex motion t o  break 

The f l u i d  may enter  t he  region of i n t e r e s t  a t  t he  outer 

cylinder by being injected tangent ia l ly  by s l o t  je ts ,  by being blown 

through a ro t a t ing  porous cylinder or  by some equivalent method 

such t h a t  the boundary conditions a t  the  outer cylinder are: 

0 At r = r  v = vo u = kVo w = o  

where k is a negative constant. These boundary conditions 

prescribe the dr iving force of the  problem, 

It is  assumed t h a t  the  cylinder a t  er0 i n  no way obstructs  

t he  flow of  the fluid but only marks the boundary of the region 

of i n t e r e s t o  

ve loc i t i e s  a t  the inner cylinder and therefore precludes considera- 

This assumption does not allow the prescr ipt ion of 

t i o n  of a r a d i a l  boundary layer on t h i s  cyl inder ,  The analysis  

will not  be concerned w i t h  the manner of exit of the f l u i d  from 

the  c e n t r a l  coreo 

I n  pract ice ,  the r a d i a l  mass flow i s  maintained by an 

imposed pressure difference between r = r and r = e r 0  

One result of t h i s  analysis  will be a r e l a t i o n  between the  r a d i a l  

0 

mass f l o w  and the imposed pressure differenceo 
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ASSUMPTIONS 

The following assumptions will hold for this analysis: 

The working fluid is 

1, viscous 

2, incompressible 

The flow is 

3. steady 

4. laminar 

5 .  axially symmetric 

and 

60 body forces are absent 

7. the properties of the f l u i d  are constant. 



IV e 

ANALYSIS 

I. Derivation of the  Governing Equations 

The Navier-Stokes equations f o r  a viscous incompressible 

f l u i d  i n  cy l ind r i ca l  coordinates a reg  with the  assumptions of 

a x i a l  symmetry, steady flow, and no body force: 

where t h e  ve loc i ty  i s  denoted by 

The cont inui ty  equation is, with the  above assumptions: 

a 

C 

d 

The governing equations w i l l  be derived by ordering the  

terms of equations (1) and ignoring the  terms which a re  shown t o  

be small i n  the  region of i n t e r e s t ,  

ordering procedure, the  above four equations w i l l  f i r s t  be rendered 

I n  order t o  f a c i l i t a t e  t h e  

dimensionless 
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The cha rac t e r i s t i c  dimension i n  the  r a d i a l  d i rec t ion  is 

the  radius  of the  p la tes ,  ro The separation dis tance between 

the  two p la t e s ,  b , is the  cha rac t e r i s t i c  dimension i n  the axial 

d i rec t ion .  The cha rac t e r i s t i c  ve loc i ty ,  Vo. , w i l l  be taken a s  

the  tangent ia l  f r e e  stream ve loc i ty  a t  ro The cha rac t e r i s t i c  

pressure i s  pVo e 

Thus 

2 

- 
z = b'i 

r = ror 

u = vou 

v = vo;; 
w = vo;i 

- 

where the bar denotes a dimensionless quant i tyo 

Subs t i tu t ing  equations ( 2 )  i n t o  equations (1) gives 

d 

"ora The Reynolds number i s  defined as  7 If the  

r o t a t i n g  flow is  of a vortex nature, which i s  the  most i n t e re s t ing  

case, (vor0! 
choice of roo 

is a constant o f  the  f l o w  i r respec t ive  o f  the  
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The boundary conditions now are: 

The flow pa t te rn  i s  governed by the  values of two dimension- 

less groups--the Reynolds number and the  shape r a t i o ,  ro/b e The 

e f f e c t  o f  one p l a t e  on the  other i s  most pronounced f o r  the  r a t i o  

r /b 

t o  th i s '  case. 

l a r g e r  than unity; therefore consideration will now be given 
0 

Now it is possible t o  expand the  three ve loc i ty  components 

and the  pressure i n  power se r i e s  i n  b/ro e 

a, 

a, - v = 1 vi(b/ro)i 

i = o  

00 

00 

Y = 1 Pi(b/ro)i 
i = o  

where the  ui, viJ wiy and Pi are independent of b/ro 

are functions of the  Reynolds number, 

Subst i tut ing equations ( 5 )  i n t o  equations ( 3 )  and 

grouping terms with equal powers of b/ro gives 

a 

b 

( 5 )  

C 

d 

but  s t i l l  
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Since the  ordered ve loc i ty  components a re  independent 

of b/ro 

set equal t o  ze roe  

, each group of  terms i n  equation (6d) may be immediately 

The zeroth order group is  simply 

Immediate in tegra t ion  gives 

Applying the  boundary conditions (4) the  result i s  

= o  
wO 

This i s  an in t e re s t ing  result. I n  most analyses, it is  

assumed a p r i o r i t h a t  the  terms of t h e  cont inui ty  equation a r e  of 

t h e  same order. 

made and the  result i s  t h a t  the a x i a l  ve loc i ty  i s  not of t he  same 

order a s  the  other two ve loc i ty  components; t h a t  is, while t h e  

r a d i a l  and tangent ia l  ve loc i t ies  are of un i t  order, t he  axial 

ve loc i ty  i s  of the  order 

I n  the  above analysis,  t h i s  assumption was not  

b/ro e 

The f i rs t  order cont inui ty  equation is, from equation (6d) 

1 3  - awl 
P a5 a; 
-- ( ruo) + - = o 

Note t h a t  now both terms of the cont inui ty  equation are of t he  

same order. 

It i s  physically reasonable t h a t  the  axial  ve loc i ty  be 

small since it is prescribed zero on a l l  boundaries where 



13 

ve loc i t i e s  are s t ipu la ted  and since it has no primary driving force 

such as  an imposed a x i a l  pressure gradient.  This f a c t  undoubtedly 

l e d  Vogelpohl t o  ignore a l l  terms involving the  a x i a l  ve loc i ty  o r  

i t s  der ivat ives .  

r a d i a l  flow within the  boundary layer  due t o  the  imbalanced pressure 

Such an assumption does not allow the  buildup of 

gradient and i s  therefore  overly r e s t r i c t i v e .  

will r e t a i n  terms containing the a x i a l  ve loc i ty  where they are t h e  

The present analysis  

same order as other terms. 

r a d i a l  flow may be considered. 

I n  t h i s  way the  r ed i s t r ibu t ion  of 

Equation (7) can now be used t o  simplify equations 

(6a, b, c ) ,  

(6a, b) disappear with the  introduction of equation (7) . 
Note t h a t  t he  zeroth order i n e r t i a  terms of equations 

For 

s impl ic i ty  the higher order terms on each s ide  

(6a, b, c )  will be dropped. The equations now 

1r+ - - Re u - + w  
O aF r 

awl 
F aF aE 
-- a ( r U , > + - = O  

The f a c t  t h a t  equations (8) do not contain the  

of equations 

become 

. 

second order r a d i a l  

der iva t ive  terms is  consistent with the  neglect of the  r a d i a l  

boundary layers discussed on page 6. 

a 

b 

(8) 

C 

d 



The set of equations (8) would be iden t i ca l  with those 

derived by Vogelpohl i f  t he  terms containing w1 were omitted e 

However, the  ordering car r ied  out above indicates  t h a t  these terms 

should not  be omitted; therefore, the  Vogelpohl equations do not 

apply t o  the  case of  b/ro small, 

The case of  b/ro la rge  w i l l  now be b r i e f l y  invest igated 

t o  see i f  t h i s  ordering y i e lds  the Vogelpohl equations. 

r /b 

of ro/b 

respect  t o  ro/b 

Assuming 

small, the  ve loc i t i e s  and pressure may be expanded i n  powers 
0 

and subst i tuted i n t o  equations (3) . Upon ordering with 

, t he  zeroth order equations a r e  

2 2 
u - - . - = - - + -  vo ap0 1 [a uo a uO 

Re ‘7 + (r 1 
O aT; r ay a r  r 

- 

2 
1 a wo 1 a%] 

uo .--= = [T + - - a r  aIp F 

These equations are i d e n t i c a l  t o  those which Rosenzweig, Lewellen 

and Ross ( 7 )  apply t o  t h e i r  cen t ra l  region (Region I of f igure  1 

i n  Ref ., 7) 

The ine r t i a  terms i n  equations (9a, b) now a re  i d e n t i c a l  

with the i n e r t i a  terms i n  the  Vogelpohl equations but the  viscous 

terms which appear above are  the  r a d i a l  der ivat ives  r a the r  than 

t h e  a x i a l  der iva t ives ,  Equations ( 9 )  hold i n  the  c e n t r a l  region 

a 

b 

( 9 )  

c 

d 
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between the  two p la t e s  but  not immediately adjacent t o  them 

because the  highest order ax ia l  der ivat ives  have been omitted, 

I n  order t o  satisfy the  boundary conditions on t h e  p la tes ,  t h e  

second order a x i a l  der ivat ives  must be taken i n t o  account. 

Introducing the  boundary layer  transformation 

- ro - 1/2 z = - R e  b 
- 
W 

-1/2 = R e  W 

i n t o  equations (3)  together with the  ordering b/ro >> 1 gives 

t h e  familiar boundary layer equations with a x i a l  r a the r  than r a d i a l  

highest  der ivat ives ,  

t h e  a x i a l  ve loc i ty  reappear. 

Vogelpohl do not accurately govern any phase of ro t a t ing  f l o w  

But i n  t h i s  caseg the  i n e r t i a  terms containing 

Thus, t he  equations derived by 

between two f l a t  p la tes ,  

By ordering the  Reynolds number with respect  t o  ro/b for 

r /b >> 1 

t h e  region of i n t e r e s t o  

in equations ( 8 ) g  various types of flow are found i n  
0 

CASE A) Assume 

I n  t h i s  cases the  viscous terms dominate and a Stokes type 

of flow results from equations (8) 

neglected but t h e  pressure term m u s t  be re ta ined s ince it is  the  

dr iving force 

The i n e r t i a  terms may be 

Equations (8) reduce t o  



2 
0 

a u  apO 

a: a; * - = -  

2 a v  s o =  

16 

l a  - awl ( ruJ + - = o -- 
7 a? a; 

Employing the  boundary conditions on the two p la tes ,  t he  solut ions 

f o r  the  ve loc i t i e s  are 

= o  
vO 

= o  "1 

where t h e  constant C must be adjusted s o  t h a t  

any r a d i a l  s t a t i o n  equals t h a t  a t  the  outer cy1 

the  mass f low a t  

nder ( Ti = 1) That 

C = 6k 

Equations ( l l a ,  b) do n o t  s a t i s f y  the  boundary conditions 

a t  r = 1 There exists a r a d i a l  boundary layer  a t  r = 1 e 

Introducing the  transformation 

- r = b/roF 

a 

C 

d 

a 

is , 



i n t o  equations (3) and rea l iz ing  t h a t  t he  i n e r t i a  terms are 

negl igible  and t h a t  the pressure term is  of order ($) 2 1  

gives t h e  r a d i a l  boundary layer equations 

"+-(p) 2 a  
iF a? r 

2 
a v  f 0 +z 

The solut ion of these equations w i l l  complete the  solut ion fo r  

t h e  case of Re << ( $ ) >> 1 

fur the r  since it is not re la ted  t o  the study of t h e  boundary 

layer  in te rac t ions  

CASE B) Assume 

r 2  
This solut ion w i l l  not be pursued 

Re = (ro/b)2 >> 1 

I n  t h i s  case the  viscous terms j u s t  balance the  i n e r t i a  

terms and visco-as flow f i l l s  t h e  r e g i m  ef in t e re s t ;  t h a t  is, 

the re  i s  tangent ia l  f l o w  

c e n t r a l  core of inv isc id  

throughout the region but  there  i s  no 

flowo The equations (8) become 

2 
a vo u v  

0 0  
- P -  

a; L 

r 

a 

b 

a 

(13) 

b 
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a; 

1 8  - awl 
F a: a; 

( rue) + - = o -- 

and t h e  boundary conditions remain (4) 

CASE C) Assume 

I n  t h i s  case the i n e r t i a  terms dominate the  viscous terms 

except i n  the boundary layer  regions near t he  p la tes ,  That is, 

equations (8) ,  with the  second der ivat ives  with respec t  t o  z 

omitted, govern the  f l o w  i n  the c e n t r a l  region between the two 

p l a t e s o  

t h i s  cen t r a l  region and the  two p l a t e s  i s  governed by t h e  full 

equations (8) since the  viscous terms must be employed t o  s a t i s f y  

t h e  boundary conditions on the  p l a t e s ,  

The flow i n  the two boundary layer  regions ly ing  between 

The conventional method of solving such a set  of equations 

i s  t o  ca lcu la te  t he  inv isc id  solution i n  the  e n t i r e  region of 

i n t e re s t ;  then expand the  Coordinate normal t o  the  boundary t o  

arrive a t  t h e  boundary layer  equations which a re  applied t o  a t h i n  

d 

region near t he  boundary. 

allowed t o  tend t o  i n f i n i t y o  The inv isc id  solut ion,  evaluated a t  

t h e  boundary i s  then matched with the  boundary layer  so lu t ion  

evaluated a t  i n f i n i t y o  

The transformed normal coordinate is 
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I n  such 

boundary layer  

an analysis  it is  impl i c i t l y  assumed t h a t  the  

does not have a first order ( i  .e 0 9  appreciable) 

effect on the inv isc id  solut ion,  

This c l a s s i c a l  analysis  works w e l l  f o r  flow over a s ing le  

p l a t e  s ince there  i s  no conservation of r a d i a l  mass flow t o  be 

s a t i s f i e d ,  

t h e  imbalanced pressure gradient will be compensated by a second 

order ( i o e e ,  small) axial flow i n  the inviscid region s ince it is  

assumed t h a t  there  i s  no r a d i a l  ve loc i ty  outside t h e  boundary layer ,  

However, i n  the  case of flow between two p la tes ,  any mass flow 

induced i n  the  boundary layer  must be compensated by a corresponding 

decrease i n  the  r a d i a l  ve loc i ty  i n  the  inviscid region s ince an 

Any r a d i a l  flow induced i n  the  boundary layer by 

axial flow is  blocked by the  presence of the other p la te .  Therefore, 

t h e  boundary layer  can have a f i r s t  order e f f e c t  on the  inv isc id  

flow even though the  boundary layer remains r e l a t i v e l y  t h i n b  Since, 

i n  t h e  two p la t e  analysis,  the  e f f ec t  of the  boundary layer  on the  

inv isc id  so lu t ion  m u s t  be taken i n t o  account, the  c l a s s i c a l  boundary 

l aye r  analysis  cannot be accurately usedo 

It may be noted here that  the presence of the second p la t e  

introduces a modified Reynolds number; where Re appeared i n  

the  one p l a t e  analysis  now Re ( $ ) 
l ayer  thickness i s  now of order 

2 
appears, The boundary 

0 /q r a the r  than ,/r 
Reb 

As the  problem stands a t  t he  moment, equations (8) with 

boundary conditions (4) govern the  first order ( i n  b/ro) flow 

between two f l a t  p l a t e s  f o r  Re 1 ( r 2  ) >> 1 e A transformation 

i s  possible which w i l l  remove the dimensionless group from the  
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equations and introduce it i n t o  the boundary conditions, 

transformation w i l l  be performed s ince the equations a r e  more 

amenable t o  analysis  and solution i n  t h i s  form, 

This 

Introducing the transformation 

- 
z =  

Reb 

i n t o  equations (8) gives 

or, dropping the bars and subscripts,  



2 1  

bV av + 3 a2V 

U s + W b . l  P = z  

a 

The boundary conditions (4) now are 

At z = O  u = v = w = o  

Returning t o  equations (6) it i s  easily seen tha t  the 

second order equations a r e  

2 2  
a vl 

b2Rez 
u v  avl ?lVo 0 1 - + - + -  - - avo - + w  avl 

U1 + u~ a? - + w  
a; 1 a; r r 

a 

b 

(17) 

C 

d 
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A l l  the  higher order equations are l i n e a r  and once the  f irst  order 

non-linear equations are solved, a l l  higher order ve loc i ty  terms 

can be evaluated, 

Equations (15) are iden t i ca l  t o  the equations governing 

the  flow i n  the s ing le  p la te  problem, However, there  i s  a 

fundamental difference between the boundary conditions i n  the  s ing le  

p l a t e  problem and those i n  the  two p la t e  problem, I n  t he  s ing le  

p l a t e  problem, u and v m u s t  asymptotically approach the  inv isc id  

values while the  two p la t e  problem u9 v and w become exact ly  

zero a t  a given value of z due t o  t he  presence of the  second plate , ,  

It i s  convenient t o  apply equations (1s) t o  t he  e n t i r e  

flow f i e l d  ra ther  than t o  divide up the  flow f i e l d  a s  is  done i n  

standard boundary layer  theoryo 

t o  match solut ions a t  the  edge of the boundary layer .  Also it w i l l  

be shown la ter  t h a t  t he  presence of t he  boundary layer  has a f i r s t  

order e f f e c t  on the  inviscid solut iono 

This formulation avoids t h e  need 

11, A Search fo r  a Similar i t% 

To determine whether there e x i s t s  a s imi l a r i t y  transformation 

f o r  t h e  problem, a fa i r ly  general transformation i s  used, 

Assume a similarity of the following form 

x =  & 

a 

d 
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Introducing equations (18) i n t o  equations (1s) gives 

t 2  2 h q  t fl ' f; 2 
flflGl - fl GIGlx + f - G G - -  G2 

3 h  3 1  P 

I E E 

12 - G G  f f t G G  - f l f 2 i i G G ~ +  h '  s f 2 r G 3 G 2 +  i3 fl 1 2  
1 2 1 2  1 2  

f, I1 

( f; + T)  fl C1 - fl h '  Glx 1 + y f3 G3 ' = 0 

where the  prime denotes d i f fe ren t ia t ion .  

For a s imi l a r i t y  t o  existg the function of  r i n  any term 

of a given equation must be the same, within a mult ipl icat ive 

constant, as the  r function in  any other term of  t h a t  equation. 

This requirement gives r i s e  t o  t h e  so-called compatibil i ty 

equations , 

F i r s t ,  the  compatibility equations f o r  fl and h w i l l  be 

From equations (19a, e )  it is e a s i l y  seen t h a t  t h e  analyzed, 

compat ibi l i ty  equations f o r  fi and h are 

flf; = %fl 2 'K h' 

II - fl 
flfl - k2 2 

a 

b 

( 1 9 )  

C 

a 

C 
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These are three equations f o r  t w o  unknowns. In  general  

such a set  of equations does not y ie ld  a non-zero so lu t ion ,  

However, t h i s  set may be solved i f  a condition i s  placed on t h e  

constants % and k . First equations (20a, c )  w i l l  be solved 

f o r  fl and h Then these solutions w i l l  be subs t i tu ted  back 

i n t o  equation (20b) in an attempt t o  s a t i s f y  t h a t  equation also.  

The most general  functions which w i l l  solve (2Oa, c )  are 

3 

fl = k4r kl/k3 - 5 

If 5 = k3 , the  exponents of t h e  radius  become i n f i n i t y  

Since these equations only have meaning f o r  i n  equations (21) 

r < 1 and since rao = 0 f o r  r < 1 t h e  functions f and h 1 
become zero f o r  % = k 3  o 

Subst i tut ion of equations (21)  i n t o  equation (19b) shows 

t h a t  equation (19) is  sa t i s f i ed  if  

k3 - kl = kl + 2 

Subst i tut ing equations (21)  i n t o  (19) and solving f o r  

f 2  and f3 gives 
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l/kl + 2 
h = k5r 

5 / k l  + 2 
f2  = k6r 

- l/kl + 2 

7 f3  = k r  

4,  k6, and k are 7 The similarity s t i l l  holds if k 49 
set  equal t o  uni ty  f o r  convenienceo 

Changing notation (kl/kl + 2 = n) equations (18) now are 

v = rn G2(z/r 1 - n/2) 

1 1 - n/2 w = r” - ’I2 G3(z/r 

a 

C 

d 

a 

This is  a known result; it is  just the  s i m i l a r i t y  used 

successful ly  by Lewellen and King ( 5 )  t o  reduce a similar set  of 

equations f o r  a s ing le  p l a t e .  

show t h a t  t h i s  s imi l a r i t y  i s  the most general one that w i l l  transform 

t h e  equations (15) i n t o  ordinary d i f f e ren t i a l  equations 

The above analysis  was performed t o  

Before 

a s i m i l a r i t y  transformation is successful, it must a l s o  transform 

the  boundary conditions of  a given problem. That is, the boundary 

conditions i n  the  transformed problem m u s t  be .appl ied a t  constant 

values of t h e  s imi l a r i t y  var iable ,  There is  no t rouble  with t h e  

b 

(23) 

C 
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boundary conditions a t  

x = 0 , 

z = 0 it i s  transformed i n t o  one a t  

The trouble l ies  with t h e  upper boundary condition. 

I n  the  case of the  single p l a t e ,  the  upper l i m i t  i s  removed 

t o  z = a0 which transforms into x = a0 , If t h e  same technique 

i s  t r i e d  i n  the two p la t e  problem, namely removing the  upper l i m i t  

t o  i n f in i ty ,  the  e f f e c t  of t he  upper p l a t e  i s  l o s t ,  This defea ts  

the  purpose of t he  analysis ,  Therefore the  upper boundary condition 

*, m u s t  be applied a t  a f i n i t e  value of z Since x = 
A. 

z = constant transforms i n t o  x = constant only for a pa r t i cu la r  

value of n, n = 1 

The pa r t i cu la r  flow pat tern f o r  n = 1 is modified after 

wheel flow, The ve loc i t i e s  u and v have z-dependent p ro f i l e s  

which are magnified by a multiplicative f ac to r  

of w i s  independent of t he  radius ,  This is  the  same similarity 

used by von Kafmgn t o  reduce the equations i n  h i s  c l a s s i c  ro t a t ing  

r while t he  p r o f i l e  

p l a t e  problem, This flow pat tern occurs only i f  there  is  no ne t  

r a d i a l  mass flow, 

n e t  r a d i a l  mass flow, Q , is given by the  equation 

This can be shown i n  the  following way, The 

rudz 

Since mass i s  nei ther  added t o  nor subtracted from the  flow a t  a 

general radius,  r 

r j Q i s  a constanto With  n = 1 equation (23a) becomes 

, the net mass flow cannot be a function of 

u = r G(z) 
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and equation (24)  can be wri t ten 

r2 .6 G(z)dz = const ,  

The only way t h i s  r e l a t i o n  can hold f o r  any rad ius  is  fo r  both 

t h e  value of the  i n t e g r a l  and the value of the constant t o  be zeroe 

But t h i s  means t h a t  t he  n e t  r a d i a l  mass flow i s  zeroe  

Ruling out t h i s  unique caseO which does not produce the  

desired vortex motion, it i s  seen t h a t  the  s imi l a r i t y  fa i l s  t o  

transform the  boundary conditions properly f o r  t h e  two p l a t e  

problem. Therefore, no similarity exists f o r  t he  two p l a t e  probleme 

IIIo A Momentum I n t e g r a l  Solution 

It is of i n t e r e s t  t o  calculate  some of the e f f e c t s  which 

the  two f l a t  p l a t e s  produce on the  flow, 

layer  blockage caused by t h e  buildup of  t he  boundary layers on 

t h e  p l a t e s  and t h e  var ia t ion  o f  the r a d i a l  ve loc i ty  with the  radius.  

These e f f e c t s  may be calculated by a momentum i n t e g r a l  

These include the  boundary 

solut ion of the problem posed by equations (15) and (16) 

The d i f f e r e n t i a l  equations t o  be approximated are 

2 bv w a v  a v +  w - c -  
u6f: aa r aZ2 

bW ( ru)  + - = O l a  
r b r  a2 

a 

c 
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The complete boundary conditions are 

A t  r = l  u = k < O  v = l  w = o  

r 2  
The d i f f e r e n t i a l  equations are v a l i d  for  Re >, ( $ ) >> 1 

The conditions (2Sa, b) are a r e i t e r a t i o n  of conditions (16) where 

a = ,/- describes the upper plate'. Condition ( 2 5 ~ )  is 

applied a t  the  midplane between the  two p la tes  and expresses t h e  

conditions of symmetry exis t ing between the  two p la t e s ,  

(2Sd) i s  the  ve loc i ty  s t a t e  prescribed a t  t he  outer edge of t h e  

p l a t e s ,  It is  assumed t h a t  the f l u i d  i s  injected a t  r = 1 such 

Condition 

t h a t  t h e  axial ve loc i ty  is  zeroo 

equal t o  uni ty  a t  r = P i n  agreement with the  o r ig ina l  nondimen- 

s ional izatfon,  The r a d i a l  ve loc i ty  i s  chosen as  some negative 

constant since it is assumed t o  be negative everywhere i n  the  

region of i n t e r e s t o  

The tangent ia l  ve loc i ty  i s  chosen 

T h i s  negative constant is  r e l a t ed  t o  the  ne t  

r a d i a l  mass flow, Q by equation (24); t h a t  is, 

or,  introducing a dimensionless mass flow, 

a 

C 

d 
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I n I 

I n  the  following analysis, only the  region from z = 0 t o  

8 ”  1/2 /- w i l l  be considered and the  synunetry conditions 

a t  the  l a t t e r  boundary w i l l  be employed, 
0 

Because of t h e  symmetry, 

t h i s  is  equivalent t o  considering the  e n t i r e  region between t h e  

two p l a t e s o  \ For brevity, l e t  M = 1/2 /= , t h u s  z = M  

i s  the  midplane between the  two p l a t e s o  
0 

Now t o  derive the  in t eg ra l  equations: As a preliminary 

step,  multiply the  cont inui ty  equation (1%) by the  r a d i a l  ve loc i ty  

component u and in tegra te  the r e s u l t  with respect  t o  z from 

zero t o  M Applying the boundary conditions 

w(0) = w(M) = 0 

and rea l iz ing  t h a t  

gives the  result 

M PI 

0 0 

Now multiply the  continuity equation by the  tangent ia l  

ve loc i ty  v and again integrate  from zero t o  M This gives 

M M 

0 0 



These equations (27) w i l l  be used t o  simplify the  in t eg ra l s  of the 

momentum equations 

Integrate  the  r a d i a l  momentum equation (1Sa) with respect 

t o  z from zero t o  M e Simplifying the  result by using equation 

(27a) and the  symmetry condition -7 = 0 gives au(M) 

2 M M 
1 d  2 -- r d r  l r u d ~ + l ( s - % ) d z ,  g az s = o  

0 0 

Integrate  the tangent ia l  momentum equation (lSb) from zero 

t o  M , Simplifying the  r e s u l t  with equation (27b) and the symmetry 

W M )  condition - = 0 gives 
32 

M I 

An addi t ional  condition appearing i n  the  two-plate problem 

which does not appear i n  the s ingle  p l a t e  problem is  the  conservation 

of r a d i a l  mass f low,  A combination of equations (24) and (26) gives 

M 
P 

Equations (28), ( 2 9 )  and (30) a re  equations fo r  t he  r a d i a l  

var ia t ions  of t he  ve loc i t i e s  u and v and the  pressure p 

It is assumed t h a t  the Reynolds number i s  s u f f i c i e n t l y  

la rge  such t h a t  the viscous e f fec ts  of the p l a t e s  do not reach 

the  midplane between the  two p l a t e s o  

thickness,  &(r)  is  less than the  value of t he  midplane M 

everywhere i n  the region of i n t e r e s t o  

That is, the  boundary layer 
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P av wdS] = - - - 1 d  - - [r2$ 
r 2 d r  B h C  

0 

It was shown i n  sect ion I1 t h a t  a t r u e  s imi l a r i t y  does 

not exist f o r  the  problem, 

analyses (3)  t h a t  the prof i les  o f  u and v are s imilar  with 

respect  t o  the  parameter z/6 (r) f o r  z < $(r)  It is  

expected t h a t  the  presence of the second p la t e  w i l l  not a f f ec t  

t h i s  l o c a l  s imi la r i ty ,  therefore it is  assumed t h a t  t he  p ro f i l e s  

of u and v a re  similar with respect  t o  the  parameter z / r  (r) f o r  z <b(r) 
Also it is  assumed t h a t  u and v are independent of  z f o r  z > b o  

The value of &- i s  assumed t o  be zero a t  r = 1 This 

However, it i s  known from single  p l a t e  

O 

means t h a t  any boundary layer  on the  outer cylinder i s  ignored, 

It i s  convenient t o  introduce the  transformation 

The upper l i m i t  of integrat ion becomes M/S 

(29) , and (30) become 

and equations (28) , 

I 0 0 

A t  t h i s  point i n  a momentum i n t e g r a l  analysis  of the  s ing le  

p la te  problem it is  usual ly  assumed t h a t  (3) 

(32) 

(33) 
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Such a form f o r  the  r a d i a l  ve loc i ty  u i s  acceptable i n  the  s ing le  

p l a t e  analysis  s ince it i s  assumed t h a t  the  r a d i a l  ve loc i ty  is 

i d e n t i c a l l y  zero outside the  boundary layer;  t he  cont inui ty  

equation is  s a t i s f i e d  by an ax ia l  flow from i n f i n i t y ,  

be done i n  the  two p l a t e  problem, 

a non-zero value outside the  boundary layer ,  

a l s o  may overshoot i n  the  boundary layer ,  

caused by the  f a c t  t h a t  r a d i a l  mass flow i s  drawn i n t o  the boundary 

This cannot 

The r a d i a l  ve loc i ty  m u s t  have 

The r a d i a l  ve loc i ty  

This overshoot i s  

l aye r  by the imbalanced pressure gradient i n  the  boundary layer ,  

There i s  no guarantee t h a t  the r a t i o  of t he  m a x i m u m  value of t h e  

r a d i a l  ve loc i ty  i n  the  boundary layer  t o  the  value outside the  

boundary layer  i s  a constant independent of the  rad ius ,  

t h e  r a d i a l  ve loc i ty  a t  a given cross-section may be divided i n t o  

two par ts ;  the  first pa r t  consis ts  of the  portion o f  u t h a t  i s  

non-zero outside of the  boundary layer  and does not have an 

overshoot i n  t h e  boundary layer,  the  second pa r t  cons is t s  of t he  

remainder of u which is  zero outside of the  boundary layer  and 

is  a measure of the  overshooto 

Thus it i s  assumed tha t  

Therefore, 

a 

(34) 
b 
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where J-< M throughout the region of i n t e re s to  The p ro f i l e s  

h19 h29 and h3 are assumed t o  be known; t h e i r  forms are 

determined i n  the  appendix, Equations (31) (32) and (33) 

become 

0 0 0 

0 0 

It should be noted here t h a t  the upper l i m i t  of in tegra t ion  

i s  a function of r through g ( r )  It i s  j u s t  t h i s  tme of 

r a d i a l  dependence t h a t  fo i l ed  the  attempt t o  f ind  a proper similarity 

transformation f o r  the  two p la te  problem i n  sect ion 11. 

the  upper l i m i t  of integrat ion is a function of t he  rad iusI  t h e  

in t eg ra l s  are not independent of the  r ad iuso  

be circumvented by s p l i t t i n g  the i n t e g r a l  i n t o  two p a r t s o  

f i r s t  p a r t  is  an integrat ion from the  lower p la te  t o  the edge of 

t he  boundary layer  (from C; = 0 t o  5 = 1 ); t h i s  i n t e g r a l  i s  

independent of  t he  rad ius ,  

5 = 1 t o  6 = M/$ 

Since 

This d i f f i c u l t y  can 

The 

The second pa r t  i s  an integrat ion from 

I n  t h i s  region it i s  assumed t h a t  % = h 3 = l  
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and h2 = 0 e This means t h a t  u and v are  functions only of 

t he  radius  i n  t h i s  region. 

function of M/S Equations (35)3 (36) and (37) become 

Thus the  second i n t e g r a l  i s  a l i nea r  

where 

b f 

0 0 

= J1hl dc d 
1 

c2 = J h2 d~ 
0 0 

The constants C are  evaluated i n  the  appendix. 

h 
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The set  of  equations (38) ( 3 9 )  and (40) are three 
dp equations f o r  f i v e  unknowns glj g2’ g3, and Another 

two re la t ionships  between these unknowns must be found. 

of equations can be found by evaluation of  equations (15) a t  

t he  lower p l a t e  (z = 0) and a t  t he  midplane (z  = M) e 

Expressing u and v by equations (%), evaluation of equations 

( l s a ,  b) a t  z = 0 gives 

A number 

and evaluation of  equations (lSa, b, c) a t  z = M gives 

The evaluation of equation (2%) a t  z = 0 was omitted 

s ince nothing i s  gained by the reintroduction of w Equations 

(42) are wr i t ten  with t h e  assumption t h a t  6 < M , therefore  

the  viscous terms a re  absent from the  r i g h t  hand s ide  of equations 

(42c, d) Equation (42b) i s  merely a condition upon the  assumed 

form of h 

y i e ld  

Equations (42d, e )  may be d i r e c t l y  integrated t o  3 

a 

(42) 

b 

C 

e 
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where the  boundary condition (25d) has been applied,  Note t h a t  

represents  the  r a d i a l  var ia t ion of t he  tangent ia l  ve loc i ty  and 

represents  t he  r a d i a l  var ia t ion of t he  r a d i a l  ve loc i ty  outside 
g3 

g l  
the  boundary l a y e r o  

(43a, b) can be used as addi t ional  equations o r  must be r e j ec t edo  

Both of  these equations are  writ ten ignoring the  e f f e c t  of t he  

boundary layers ,  

It m u s t  now be decided whether equations 

It m u s t  be decided whether the ve loc i t i e s  a t  t he  

midplane are affected by the  presence of t he  boundary layers  or  no to  

The tangent ia l  ve loc i ty  together with the  prescribed r a d i a l  

ve loc i ty  toward the  axis of rotat ion is  the  driving force of 

t he  problem. The only way tha t  the  tangent ia l  ve loc i ty  can be 

reduced from i t s  free stream value i s  by the  act ion of viscous 

forces ,  By def in i t ion ,  

the  viscous forces ,  Since it i s  assumed t h a t  6 M the  

tangent ia l  ve loc i ty  a t  t he  midplane i s  not s ign i f i can t ly  a f fec ted  

by the  presence of t he  boundary layers ,  Therefore equation (b3a) 

which represents  t he  r a d i a l  var ia t ion of the  tangent ia l  ve loc i ty  

$ marks the  upper l i m i t  o f  t he  act ion of 

can be used a s  an addi t ional  re la t ionship,  

On the  other hand, it was s t a t ed  i n  the introduction t h a t  

there  a re  strong r a d i a l  ve loc i t ies  i n  the  boundary layer ,  

t he  conservation of r a d i a l  mass flow, t h i s  requires  a corresponding 

decrease i n  the  r a d i a l  velocity outside the  boundary l aye r ,  

the  presence of the boundary layer  a f f ec t s  the  r a d i a l  ve loc i ty  

even i n  the  region outside the boundary layer ,  

equation (43b) which gives the r a d i a l  var ia t ion  of  the r a d i a l  

By 

Thus 

Therefore, 
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ve loc i ty  external  t o  the  boundary layer  i s  inaccurate with boundary 

layers  present and will be ignored, 

I n  order t o  make the  set o f  equations (38), (39), (40) and 

(43a) complete, one more relat ionship must be found between t h e  

unknowns. Ei ther  equation (42a), (42c) or a combination of t h e  

two w i l l  give the  addi t ional  re la t ionship,  However, t he  r e su l t i ng  

set  of equations i s  qui te  cumbersome and n o t  amenable t o  so lu t iono  

Since the  momentum i n t e g r a l  solution i s  an approximate solution, 

it is  not out of order t o  introduce a simplifying assumption which 

will make the equations mueh more amenable t o  solut ion,  

assumption i s  

This 

where 3 is  independent of t h e  radius  but depends on M and 

This i s  equivalent t o  assuming t h a t  the  r a t i o  of t h e  maximum value 

k 

of the  r a d i a l  ve loc i ty  i n  t h e  boundary layer  t o  t he  value outside 

t h e  boundary layer  i s  a constant independent of t he  rad ius ,  

assumption r e s t r i c t s  the form of  the ve loc i ty  overshoot i n  t h e  

boundary layer  but  s t i l l  allows one t o  gain a measure of the  

influence of t h e  boundary layer on the  outer flow, 

allows an exact closed-form solution t o  be obtained, 

This 

The assumption 

Subst i tut ion of equations (43a) and (44) i n t o  equations 

(381, (3919 and (40) gives 
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b ’  

rgl  + (cl + c2 - 1) $1 = k~ 

(46) 

(47) 

Equation (47) may be solved f o r  gl i n  terms o f  J- 

Subs t i tu t ion  of t h a t  r e s u l t  into equation (46) gives 

66‘ = -  

[M + (C1 + 5 C2 - 1)Jf k!? (cu - c1 + El c23 - El c*) 

(48) 

where the  prime dentoes d i f fe ren t ia t ion ,  

Direct in tegra t ion  o f  t h i s  equation yields  t h e  expression 

fo r  the  boundary layer  thickness, 

(cl + Fl c2 - 116 
M + (C1 + 5;1 c2 - 1)s 

- 
M log  [l + 

where the  boundary condition (1) = 0 has been appliedo 

To study the character of t h i s  equation note t h a t  k i s  a 

measure of t he  mass flow and is negative. If it is  zero t h e  solut ion 

is meaningless since the  analysis leading t o  the  solut ion i s  

i n v a l i d , .  It is  shown i n  the  appendix t h a t  

C 1 + E 1 C 2  - 1 > o  - c l + E  c - r ; l c 2 < o  and ‘13 1 23 
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Therefore the  solut ion ( 4 9 )  does not exhib i t  s ingu la r i t i e s  e 

It is possible t o  determine the nature of & ( r )  without 

an e x p l i c i t  so lu t ion ,  Assume tha t  6 has a maximum a t  some r # 0, 
ignoring f o r  t he  moment the f a c t  t h a t  the equations a re  not va l id  

for  r < c ,, If equation (48) i s  t o  hold then the  denominator of 

the l e f t  hand s ide,  M + (C1 + El C2 - 1)6 
zeroo Solving t h i s  f o r  6 gives 6,, = - M/C1 + % C2 - 1 

This s t a t e s  t h a t  

always greater  than zeroo 

inva l id  and 6 has i t s  maximum a t  I" = 0 

, must be equal t o  
- 

6,, < 0 , but 5 is  a physical quant i ty  

Therefore the  leading assumption i s  

Equation (48) a s se r t s  t ha t  A' i s  zero a t  r = 0 i n f i n i t e  

f o r  r = 1 (because 6 =  0) and negative but f i n i t e  f o r  0 < r < 1 . 
Therefore it follows t h a t  g(0) is  f i n i t e  

The m a x i m u m  value of  fw i th in  the  region of i n t e r e s t  occurs 

a t  r = 6 For c small, lmax may be approximated by i ( 0 )  e 

For convenience introduce the  notat ion 

Note t h a t  B is  a modified boundary Xayer thickness and A is  a 

measure of  the  imposed r a d i a l  mass flow, 

The expression f o r  B and A may be somewhat s implif ied by 

introduction of the  calculated values of t he  constants c from the  

appendix and by noting t h a t  M = 1/2 / R e  b2/r2 ' and kM = a 
where a = Q*/2nprobVo o Thus 
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- 

dRe 

'dRe  b 266 + 64 El 
A S -  

Note t h a t  is  negative so tha t  A is  always pos i t ive .  

Now equation (49) becomes 

This equation i s  solved graphically i n  f igure  2 ,  

so lu t ion  may be used t o  obtain p lo t s  of B versus r f o r  various 

This graphical  

values of A ; these are p lo t ted  i n  f igure  3 ,  

As was s t a t ed  above9 the maximum value of B occurs a t  

r = O  ; B,, versua (A) is  p lo t ted  i n  f igure  b o  

Rewriting equation (47) i n  terms of  B gives 

g l  1 *m - =  
k 

This re la t ionship  i s  p lo t ted  in  f igure  5 f o r  various values of 

The r a d i a l  shear stress a t  the  p l a t e  is  given by 

A 

7 = p  r 

where t h e  a s t e r i sks  indicate  

t h e  functions g h and 

dimensional quant i t ies ,  I n  terms of 

6 t h i s  r e l a t i o n  is 

a 

( 5 0 ' )  

b 



T = 5 6 ( hi(0) + El h ; (O) ) s  Q r 
0 

r 

* av 
az* 

7 = p -  e 

This re la t ionship  is  p lo t ted  in f igure  6 f o r  various values of  A 

The tangent ia l  shear s t r e s s  a t  the  p l a t e  is  given by 

3 
z = 0 

or  i n  terms of  g , h and 6 it is  

1 . T  = - r 
0 

e 

This re la t ionship  i s  p lo t ted  i n  f i gu re  6 f o r  various values of A 

, equation (45) With $ and gl known a s  functions of r 
dP gives - as a function of r and the  various constants appearing dr 

i n  the  problem, This equation may be considered as  a re la t ionship  

between the  pressure gradient and the net  r a d i a l  mass flow 
which i s  just 2kM 

So far 5 has been an unknown; it nay be determined by use 
dP of equations (&?a, c) combination t o  ge t  r i d  of 

t h a t  g3 = l/r and g2 = 

giveso noting 
- 
k lg l  

1 
The term gl may be found from equations (52)  and (51) 

The result i s  
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If the r i g h t  hand s ide  of equation (53) were independent of 

r Knowing 

M, k and A , equation ( 5 3 )  may be averaged over r and solved 

, equation (44) would be exact instead of approximate. 

f o r  El e 

If I k I 1 and El >> be5 a good approximation i s  

(54) 

- 
An a l t e rna t ive  method of evaluating kl is  by experimentation, 

Since x, depends on A (through i t s  dependence on S ) and 

A is  a function of El , 3 w i l l  have t o  be evaluated by t r i a l  

and error, knowing PI and k 
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DISCUSSION OF RESULTS 

Figure 2 is the  graphical solut ion of equation (51)o It 

p l o t s  B 

of 1 - r /A where the  parameter A i s  a measure of the  s t rength 

of the imposed r a d i a l  mass flow. 

, the  modified boundary layer  thickness, as a function 

2 

Figure 3 is obtained d i r ec t ly  from f igure  2, Figure 3 is  

a p lo t  of @ t he  modified boundary layer  thickness a s  a function 

of the radius  f o r  various values of A t h e  measure of the  r a d i a l  

mass flow, 

l ayer  w i l l  have on the  p l a t e o  

This f igure  shows the ac tua l  form t h a t  the boundary 

Note t h a t  the boundary layer  thickness i s  a strong function 

of t he  r a d i a l  mass f l o w o  

f igu re  k which p lo t s  B,, 

boundary layer  thickness a s  a function of  

r a d i a l  mass flowo 

layer  blockage; t h i s  f igure  shows t h a t  the  amount of boundary 

layer  blockage depends strongly upon the  applied r a d i a l  mass flow, 

This funct ional  dependence i s  shown i n  

, the  maximum value of t he  modified 

A 

is d i r ec t ly  a measure of the boundary 

9 the  measure of t he  

B,, 

It has been repeatedly s t a t ed  i n  t h i s  analysis  t h a t  the  

boundary layer  draws r a d i a l  mass flow from the  outer flow, 

influence of t he  boundary layers upon the outer flow i s  depicted in 

This 

f igure S o  It i s  a p l o t  o f  gl/k t he  r a d i a l  veloci ty ,  a s  a 

function of the  radius  €or  various values of A ,  A = OD corresponds 

t o  a very la rge  imposed r ad ia l  mass flow such t h a t  the boundary 
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l aye r s  a re  very small and have negligible influence on the outer 

flowo A s  the  value of t h e  r a d i a l  mass flow i s  decreased, t he  

boundary layers  a t  a f ixed radius grow la rger  and exer t  a l a rge r  

influence upon the  outer flow, Note t h a t  the value of  t he  r a d i a l  

ve loc i ty  may remain r e l a t i v e l y  small over a s ign i f icant  portion of 

t h e  radius ,  

may be so  grea t  as  t o  cause g /k t o  become negative, I n  t h i s  

case the  vortex notion would break down ( t h i s  case was not considered 

i n  t h i s  analysis)  , 

It is possible tha t  the  influence of t he  boundary layer  

1 

Figure 6 p lo t s  the  tangent ia l  and r a d i a l  shear stresses 

a s  a function of r f o r  various values of A the  measure of 

t h e  r a d i a l  mass flow, The shear stresses are  both i n f i n i t e  a t  

r = 1 

calculat ions a t  a sharp leading edge, and a t  

due t o  the  s ingular i ty  which appears i n  a l l  boundary layer 

r = 0 because t h e  

ve loc i t i e s  tend t o  i n f i n i t y  as r tends t o  ze ro ,  The shear 

stresses have minimum values i n  t he  region e r < 065 f o r  a 

l a rge  range of A , A s  A grows large,  indicat ing a la rge  r a d i a l  

mass flow, the  boundary layer  becomes th in  and ve loc i ty  gradients  

become l a rge ,  Therefore “r increases a s  A increases ,  
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CONCLUSIONS 

It has been shown t h a t  the first order equations governing 

the  flow between two f l a t  plates  f o r  

those governing the  f l o w  over one p l a t e e  

b/ro << 1 a r e  iden t i ca l  t o  

Although the  equations are the  same f o r  the  two problems, 

the  boundary conditions are fundamentally d i f f e ren t ,  

conditions f o r  the  two p la t e  problem preclude the  use of  a similarity 

transformation 

The boundary 

The momentum in t eg ra l  solution of the  two p la t e  problem is  

bas i ca l ly  d i f f e ren t  from t h a t  of the  s ing le  p la te  problem because 

t h e  conservation of r a d i a l  mass flow i s  used as  one of t he  

governing i n t e g r a l  equations i n  t he  formere 

The solut ion shows the strong dependence o f  the  boundary 

layer  thickness and the  r ad ia l  ve loc i ty  on the imposed r a d i a l  

mass flow, 

analysis  since r a d i a l  mass f low is  not a governing parametera 

This dependence is not brought out i n  a s ingle  p l a t e  
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APPENDIX 

The purpose of  t h i s  appendix i s  t o  assume reasonable 

p ro f i l e s  f o r  the  functions hlj h2 and h3 and t o  ca lcu la te  the  

The boundary conditions t o  be s a t i s f i e d  are 

ri 
At c = O :  hl = h2 = h3 = 0 h3(0) = 0 

At 6 = 1 :  hl = h3 = 1 h2 = 0 

a l a 
A t  6 = 1 :  hl = h2 = h3 = 0 

a 

b 

C 

11 
The requirement t h a t  h (0) = 0 i s  a d i r e c t  result of 3 

equation (42b) which i s  an evaluation of the  tangent ia l  momentum 

hl equation a t  the  p l a t e o  It has been previously assumed that 

and h are iden t i ca l ly  one and h2 i s  iden t i ca l ly  zero fo r  

grea te r  than oneo 
3 

Condition (Alc) i s  an expression of t h e  

reqdirement t h a t  the  functions should jo in  smoothly a t  5 equal 

t o  oneo For greater  smoothnessj higher der ivat ives  may a l so  be 

set  equal t o  zero a t  6 equal t o  zeroo 

which is  associated with the  tangent ia l  h3 The p r o f i l e  f o r  

ve loc i ty  v is expected t o  increase monotonically from zero a t  

% 9  
6 equal t o  zero t o  one a t  6 equal t o  oneo The p r o f i l e  f o r  

which i s  associated with the  regular pa r t  of the r a d i a l  ve loc i ty  

u i s  expected t o  vary i n  a s imilar  manner. The p ro f i l e  f o r  h2 
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which i s  associated with the overshoot of  t he  r a d i a l v e l o c i t y ,  i s  

expected t o  increase from zero a t  

maximum f o r  some 0 < 6 < 1 and t o  re turn  t o  zero a t  5 equals 

one 

6 equals zero, t o  reach a 

I n  analyses of t h i s  type, t he  function most commonly 

assumed i s  a polynomial i n  t h e  independent var iable  with coef f ic ien ts  

which a re  determined from the boundary conditions,  

It w i l l  be assumed t h a t  hl i s  a quadratic polynomial and 

h2 and h are cubic polynomials s ince these a re  the  simplest  

polynomicals which a re  able  t o  s a t i s f y  t h e  necessary conditions: 
3 

- t c 5 + c2 c2 + c3 c3 h3 - co 1 

Since the  assumed form f o r  % has three unknown coef f ic ien ts  

and hl must s a t i s f y  three  boundary conditions it i s  completely 

determined: 

% = 6(2 - c )  

has fou r  unknown coef f ic ien ts  and f o u r  h3 Similarly,  

boundary conditions t o  sat isfy:  

a 

C 
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The case f o r  h2 i s  not so  c l ea r  c u t ,  There a re  only three 

2 boundary conditions t o  be sa t i s f i ed ,  but  i f  it i s  assumed t h a t  

is a quadratic polynomial application of t he  boundary conditions 

requires  that the  constants a r e  a l l  zero,  

solut ion,  it must be assumed tha t  h, i s  a cubic polynomial. Now 

h 

Therefore f o r  a non-zero 

three of the  constants b can 

There i s  no l o s s  of genera l i ty  

t o  unity. The p ro f i l e  f o r  h2 

L 

be found i n  terms of the  four th ,  

i f  t h i s  four th  constant i s  set  equal 

is: 

The p ro f i l e s  hl, h2 and h are p lo t t ed  i n  f igure  7, 3 
Now t h a t  the  p ro f i l e s  are chosen, t he  constants C are 

e a s i l y  ca lcu la tede  

1 = j’ hlh2 d6 = 7 = J’h: d6 = 12 5 2  
0 0 

0 0 

Evaluation of the  functions hl, h2$ and h a t  t he  p l a t e  3 
gives 



I 
hl(0) = 2 h;(O) = - 2 

I 
h2(0) = 1 h:(O) = - 4 

h;(O) = 2 3 $ 0 )  = 0 

The groups of constants found i n  equations (ks), (46), and 

(47) become. 

3 - 4  c l + E  c - 1  = 12 1 2  

- I;, c2 t - ( cu - c1 + T; c 4% ) m + m  1 23 

41 
70 

c33 - 1 = - -  

59 19E1 
cu + El c23 - 1 = - m + m  

- 
The expression (C1 + %C2 - 1) is  ju s t  t h e  r a t i o  of t h e  

average r a d i a l  ve loc i ty  i n  the boundary layer  t o  the  r a d i a l  ve loc i ty  

outside the  boundary l aye r ,  It has been s t a t ed  t h a t  there  exist 

strong r a d i a l  ve loc i t i e s  i n  the boundary layer  which d r a w  f l u i d  

from t h e  region outside the  boundary l aye r ,  If t h i s  i s  t rue ,  then 

t h e  average r a d i a l  ve loc i ty  i n  t he  boundary layer  must be l a rge r  

than t h e  value outside of the boundary layer  and the  above expression 



must be always posi t ive.  By equation (A8)  t h i s  means t h a t  

4'4 and c1 + c2'1 - 1 > 0 

By subs t i tu t ion  of t he  values given i n  equation ( A 6 )  

i n t o  t h e  expression cU - c1 + i5(~~~ - c2) 

t h a t  

it is easily seen 

- 
'1 + %'2 ' '13 + k lC23 

Therefore the  inequal i t ies  expressed on page 38 are  shown 
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